Penny+Giles

A Curtiss-Wright Company

JC 3000 FING ER O PERATED JO YSTICK CO NTRO UER

INNO VATION IN MOTION

The JC3000 joystick controller is designed for demanding applications in remote control chestpacks or auxiliary functions on industrial vehicles and other man-machine interfaces, where precise control, signal reliability, and compact size are important. The joystick is available with single or dual axis control, and can be specified with a choice of either long life potentiometer tracks, or switched output signals.

Innovative design

With a choice of potentiometer tracks that provide the analog signals proportional to lever movement or 3,4 or 5 switched outputs per joystick half axis, the JC 3000 can be configured to provide a range of output signals and directional/ center switching functions. The JC3000's low profile below the mounting panel and short lever height above, allows a number of joysticks to be mounted side by side without lever interference. All electrical signals terminate in a 12-way Hirose connector on each joystick axis, reducing installation time.

Total reliability

The JC3000 is manufactured using mainly cast metal components and includes lever mechanics designed to give smooth proportional control. The lever will withstand a 900N downward static load, with up to 20 Nm maximum overload to the lever at full deflection. Long life potentiometer tracks featuring multi-fingered precious metal wipers give low electrical noise and a working life greater than 5 million operations with zero maintenance during this period. The high quality printed switch tracks are also designed to provide a working life greater than 5 million operations.

Features

- Potentiometric or switched sensing
- Single or dual axis control
- High strength lever with precise proportional control
- Sealed above the panel to IP66
- Choice of outputs and switches
- Choice of handles with or without switches
- Hirose series multi-lock connector

Benefits

- Long life and maintenance-free operation
- Suited to a wide range of operator control functions
- Rugged and smooth lever movement
- Operation in demanding environments
- Enables user configuration for system safety
- Additional operator control functions
- Simple, error free installation

jC 3000 fing er o perated J O YSTICK CONTRO LLER

Potentiometric sensing

Designed to interface with an electronic controller, the long-life potentiometer track generates analog outputs with switched reference signals that are proportional to the distance and direction over which the handle is moved. The analog output can be configured to provide signals for fault detection circuits, and a center tap provides an accurate voltage reference for the center position or a zero point for a bipolar supply voltage. The electrically independent switch operates with separate contacts each side of the joystick center position, in each available axis.
The key advantages of this technology are its proportional output and the versatility it derives from its simplicity; it consists of a carbon-based potentiometer track with no complex circuitry or electronics, so it is not susceptible to electromagnetic interference or magnetic fields. However, as a contacting device it does have a long, but finite life and due consideration should be given to applications subject to high intensity use or where high dither or vibration may be encountered.
Please ask for details on our contactless Hall-effect joystick range if you have an application which may encounter dither or vibration.

Switched output

The JC3000 can also be supplied with switched tracks on each axis, with options for 3,4 or 5 switches either side of the center position, in addition to a center off switch. An option for mechanical detents is also available, where the switching positions coincide with the detents, allowing the operator to determine the angular position of the joystick lever easily. The switches operate sequentially as the joystick lever is moved from center to the end stop in each axis.

PERFORMANCE
MECHANICAL

Switch-Directional or Center Off/ Center On*

Switch operating angle
Supply voltage - maximum Load current - maximum

Vdc

mA
3.75 either side of center position

30
5

* The JC3000 has an additional center switch in each axis. When the handle is moved, the center switch signal will become open circuit ('break before make') before the directional switch closes. This angle is typically less than 10. The directional and center switches are provided to allow customers to integrate the joystick into their control system in a safe manner. It is recommended that these switches are utilised to ensure a safe condition exists at all times.

For dimensions, mounting details and installation recommendations see page 8 .
\dagger The long life resistive elements require a high impedance load in the wiper circuit to minimise the current flowing through the wiper for optimum conditions. Connecting the joystick output to a control circuit/ controller with a Wiper Circuit Impedance that is lower than stated above can result in an offset of the output voltage through the travel of the joystick. This may be most noticeable when the joystick is at rest at the centre position. A lower than specified wiper circuit impedance can also result in a higher than stated output current and this in turn will result in a reduced electrical life of the potentiometer element. The potentiometer element must be connected as a Voltage Divider and should not be used as a variable resistor. Use as a variable resistor will result in incorrect operation of the control system.

JC $3000 \underset{\text { an alo g output }}{\text { Jo ratick contro }}$

ELECTRICAL
 CON N ECTIONS

Mating 12-way connector and flyleads

Y-Axis Allocation

O utput voltage signal
Switch track N/O (lever forward +Y) Not connected

Potentiometer center tap
Switch track center on
Not connected

Switch track N/O (lever backward -Y)
Switch track common
Normally not connected unless ZC1/ZCS handle is fitted (NY and XY code only) Potentiometer backward (-V or zero supply) Potentiometer forward (+V supply)

Normally not connected unless ZC 1/ZCS handle is fitted ($N Y$ and $X Y$ code only)

MULTI PIN CONNECTOR DIAGRAM

All potentiometer track and directional/center/handle switch connections terminate in a 12 -way Hirose DF3-12P-2DS(01) series connector on each joystick axis - a mating connector and flylead is available (one is required for each axis). The connectors used on the JC3000 joystick are gold plated, therefore the mating connectors should also be gold plated.

SA310621 MK1 - Connector, terminals and 100mm long UL1007 wires - 28AWG (7/0.127mm) SA310621 MK2 - Connector, terminals and 300mm long UL1007 wires - 28AWG (7/0.127mm)

X-Axis Allocation	Connector Pin Number	12-way Harness Wire Colour
O utput voltage signal	1	Black
Switch track N/O (lever right + X)	2	Red
Normally not connected unless ZC1/ZCS handle is fitted (XN code only)	3	Blue
Potentiometer center tap Switch track center on	4	White
Normally not connected unless ZC1/ZCS handle is fitted (XN code only) Switch track N/O (lever left -X)	6	Green
Switch track common	7	Yellow
Not connected	8	Brown
Potentiometer left (-V or zero supply)	9	Orange
Potentiometer right (+V supply)	10	Grey
Not connected	11	Violet

PERFORMANCE
MECHANICAL

Lever breakout torque XY	Nm	0.2			
Lever operating torque XY	Nm	0.6 (full lever deflection at $\pm 31^{\circ}$)			
Lever detent torque XY	Nm	0.1 approx.			
Maximum allowable torque XY	Nm	12.5 to 20 (full lever deflection, depending on gate and detent options selected)			
Lever operating angle	\bigcirc	± 31 max. in X and Y directions (Actual angle will depend on gate selected)			
Lever action		Self centering, aligned X and Y			
Lever gate profiles		Single axis in X or Y , Square or Plus			
Detent angles	-	Nominal	Lever angle	Gate Code	Track Code
		± 5.5	-	-	-
		± 12	-	-	-
		± 18	± 19	$\Phi 19$	SW3
		± 24	± 25	$\Phi 25$	SW4
		± 30	± 31	$\Phi 31$	SW5

Maximum \mathbf{Z} axis torque Expected life Weight

Nm $\quad 5$
>5 million operations
g $\quad 205$ nominal, without handle fitted

ENVIRONMENTAL
Operating temperature
Storage temperature
Environmental protection above the flange

ELECTRICAL
Switch Track
Number of switch positions
Number of detents
Switch angles
Supply voltage - maximum
Load current - maximum Insulation resistance

Switch -

Center Off
Switch operating angle
Supply voltage - maximum
Load current - maximum
Vdc $\quad 30$
mA 5

SWITCH ACTIVATION DIAGRAM

Switch track output and center switch signals on both X and Y axes are Normally O pen at lever center position. Switch sequences close depending on the direction of lever movement and the detent position.
See the diagram for the switch activation profile.

JC 3000 Jo Ystick contro ller

ELECTRICAL

CON NECTIONS

Mating 12-way connector and flyleads

Y-Axis Allocation

Switch track common
Center off switch
Switch 1 (lever forward +Y)
Switch 1 (lever backward -Y)
Switch 2 (forward \& backward)
Switch 3 (forward \& backward)
Switch 4 (forward \& backward)
Switch 5 (forward \& backward)
Not connected
Normally not connected unless ZC 1/ZCS handle is fitted (NY and XY code only)
Normally not connected unless ZC1/ZCS handle is fitted (NY and XY code only)

Switch track common

All switch track/center/handle switch connections terminate in a 12 -way Hirose DF3-12P-2DS(01) series connector on each joystick axis - a mating connector \& flylead is available (one is required for each axis). The connectors used on the JC3000 joystick are gold plated, therefore the mating connectors should also be gold plated.

SA310621 MK1 - Connector, terminals and 100mm long UL1007 wires - 28AWG ($7 / 0.127 \mathrm{~mm}$) SA310621 MK2 - Connector, terminals and 300mm long UL1007 wires - 28AWG ($7 / 0.127 \mathrm{~mm}$)

X-Axis Allocation

Switch track common
Center off switch
Switch 1 (lever right +X)
Switch 1 (lever left -X)
Switch 2 (right \& left)
Switch 3 (right \& left)
Switch 4 (right \& left)
Switch 5 (right \& left)
Not connected
Normally not connected unless ZC 1/ZCS handle is fitted (XN code only)
Normally not connected unless ZC 1/ZCS handle is fitted (XN code only)
Switch track common
Connector
Pin Number
1
2
3
4
5
6
7
8
9
10
11
12

12-way Harness Wire Colour Black Red Blue
White G reen Yellow Brown O range

Grey
Violet
Black/White

Black/Red

MULTI PIN CONNECTOR DIAGRAM

SWITCH TRACK

JC 3000 jo Ystick contro ller

DIMENSIONS
Note: drawings not to scale

Lever angle (X으) depends on gate selected.

The joystick is designed to be fitted from below the mounting panel, through a $50.75 / 51.00 \mathrm{~mm}$ diameter hole. The effectiveness of the joystick flange sealing is dependent on the panel mounting surface being sufficiently rigid to compress the sealing gaiter. The surface finish of the mounting panel is critical to achieving an adequate seal and rough surface finishes, paint chips, deep scratches, etc. should be avoided.

Recommended panel thickness

3.5 to 6 mm

Recommended screw torque

The JC3000 joystick requires $4 \times M 3$ screws (not supplied) to attach the flange to the mounting panel. To maintain an effective seal between the joystick flange and the mounting panel, the mounting screws should be tightened to a recommended fixing torque of 1 Nm .

PERFORMANCE OPIIONS

FEATURE
CODE

AXES

G ATE

Selecting the gate style and angle determines the track code for switched output and 2/3 of the final track code for analog output versions.

TRACKS -

Analog output Final track code element * is determined by the gate/angle previously selected.

TRACKS -
 Switched output
 LEVER SPRING FORCE

INTERFACE

HANDLE STYLE

See pages 10-11

Single axis in Y direction only - Forward/Backward Single axis in X direction only - Right/ Left Dual axis		NY XN XY
Single axis with ± 310 lever range	(Track code = P_5 or SW5)	131
Single axis with ± 250 lever range	(Track code = P_4 or SW4)	125
Single axis with ± 190 lever range	(Track code = P_3 or SW3)	119
Square with ± 310 lever range in X and Y	(Track code = P_5 or SW5)	S31
Square with ± 250 lever range in X and Y	(Track code = P_4 or SW4)	S25
Square with ± 190 lever range in X and Y	(Track code = P_3 or SW3)	S19
Plus with ± 310 lever range	(Track code = P_5 or SW5)	P31
Plus with ± 250 lever range	(Track code = P_4 or SW4)	P25
Plus axis with ± 190 lever range	(Track code = P_3 or SW3)	P19

Analog potentiometer -1.8 k	$0-100 \%$	± 3.750 directional switch	PN*
Analog potentiometer -2 k	$10-90 \%$	± 3.750 directional switch	PR*
Analog potentiometer -2.9 k	$25-75 \%$	± 3.750 directional switch	PQ* *
Analog potentiometer -5 k	$0-100 \%$	± 3.750 directional switch	$\mathbf{P E}^{*}$
Analog potentiometer -10 k	$0-100 \%$	± 3.750 directional switch	$\mathbf{P L}^{*}$

Switched track - 5 switches either side of center SW5
Switched track - 4 switches either side of center SW4Switched track - 3 switches either side of center
Aligned with axis

A

| No detent feature - available for all gate code options | D00 |
| :--- | :--- | :--- |
| 5 each side of center position - option for gate codes 131; S31; P31 | D5H |
| 4 each side of center position - option for gate codes 125; S25; P25 | D4H |
| 3 each side of center position - option for gate codes 119; S19; P19 | D3H |

Standard interface - no electronics STN
No handle, plain lever NHP
No handle, M5 threaded lever Tapered handle, no functions K10
Ball handle, no functions BOO
Low profile, fluted handle, no functions HLO
Handle with momentary switch action ZC1 ZCS
EXAMPLE ORDER CODES J C3000-XY-S31-PN 5-M-A- D00-STN-K10

」C3000 JOYSTICK CONTRO LLER HANDLE OPTIONS

NHP
No handle, plain lever

NHT

No handle, M5 threaded lever

K10

This handle option is a simple tapered style with no switch functions, allowing simple fingertip control.

B00

This handle option is a spherical ball style with no switch functions, allowing simple 'finger and thumb' control The handle has a recessed diametral groove on the circumference to aid grip.

HLO

This handle option is a low profile, fluted style that has a maximum 59.2 mm height above the mounting panel. This option allows closer spacing of multiple joysticks within a small surface area - typically in applications like remote control chest packs and robotics equipment.

B00

ZC1 or ZCS HANDLE OPTION A switch function can be incorporated by using the ZC1 external button switch or the ZCS internal switch to verify the change in signals from the joystick.

ZC1 or ZCS ELECTRICAL

PERFORMANCE
Maximum height above flange mm
Maximum diameter mm
Environmental sealing (IEC 60529)
Number of switches
Action
Switch operating force
Maximum current
Expected electrical life

N
mA
operations

ZC1
ZCS
73.8

76
26.1

23
IP65
IP66
1
Momentary button

3
200 @ 50Vdc
1 million

1
Momentary handle depress
7
100 @ 30Vdc
500,000

Switch connections terminate on the Hirose DF3 series connector. Actual pin allocation depends on the joystick track type and gate selection.
See page 5 for Analog O utput version connections.
See page 7 for Switched O utput version connections.

Penny+Giles

A Curtiss-Wright Company

www-pennyandgiles.com

Penny \& Giles
Position sensors, joysticks and solenoids for commercial and industrial applications.

36 Nine Mile Point Industrial Estate Cwmfelinfach
G went NP11 7HZ
United Kingdom
+44 (0) 1495202000
+44 (0) 1495202006 Fax
sales@ pennyandgiles.com

665 North Baldwin Park Boulevard
City of Industry, CA 91746
USA
+1 6264802150
+16263696318 Fax
us.sales@ pennyandgiles.com

Straussenlettenstr. 7b
85053 Ingolstadt,
Germany
+49 (0) 84161000
+49 (0) 84161300 Fax
info@penny-giles.de

3-1-A, Xiandai Square,
No 333 Xingpu Rd,
Suzhou Industrial Park, 215126
China
+8651262873380
+8651262873390 Fax
sales@ pennyandgiles.com.cn

The information contained in this brochure on product applications should be used by customers for guidance only. Penny+Giles Controls Ltd makes no warranty or representation in respect of product fitness or suitability for any particular design application, environment, or otherwise, except as may subsequently be agreed in a contract for the sale and purchase of products. Customer's should therefore satisfy themselves of the actual performance requirements and subsequently the products suitability for any particular design application and the environment in which the product is to be used.

Continual research and development may require change to products and specification without prior notification All trademarks acknowledged.

15 Airfield Road
Christchurch
Dorset BH23 3TG
United Kingdom
+44 (0) 1202409409
+44 (0) 1202409475 Fax sales@ pennyandgiles.com

